

CSCI-GA.2433-001

Database Systems

Lecture 4: Relational Algebra and Calculus

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Relational Algebra

- Queries are composed using a collection of operators.
- Every operator:
 - Accepts one or two relation instances
 Returns a relation instance.
- Compose relational algebra expression
- Each query describes a step-by-step procedure for computing the desired answer.

Relational Algebra

- Five basic operators
 - Selection
 - Projection
 - Union
 - Cross-product
 - Difference

Selection

 $\sigma_{Selection_Criteria}^{(Input)}$

Manipulates data in a single relation

A relation instance

< . <=, =, ≠, >=, or >

The selection operator specifies the tuples to retain through selection criteria.

A boolean combination (i.e. using V and Λ) of terms

Attribute op constant or attribute1 op attribute2

Selection

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Projection

 $\pi_{fields}(Input)$

Allows us to extract columns from a relation

Example:

sid	sname	rating	age		
28	yuppy	9	35.0	π (C)	age
31	lubber	8	55.5	$age^{(32)}$	35.0
44	guppy	5	35.0		55 5
58	rusty	10	35.0		55.5

Set Operations

- Takes as input two relation instances
- Four standard operations
 - Union
 - Intersection
 - Set-difference
 - Cross-product
- Union, intersection, and difference require the two input set to be union compatible
 - They have the same number of fields
 - corresponding fields, taken in order from left to right, have the same domains

Set Operation: Union

- R U S returns relation instance containing all tuples that occur in either relation instance R or S, or both.
- R and S must be union compatible.
- Schema of the result is defined to be that of R.

Set Operation: Union

S2

S1

sid	sname	rating	age	sid	sname	rating	age
<u> </u>	ductin	7	45.0	28	yuppy	9	35.0
	uusun		43.0	31	lubber	8	55.5
31	lubber	8	55.5	44	guppy	5	35.0
58	rusty	10	35.0	58	rusty	10	35.0

sid	sname	rating	age	
22	dustin	7	45.0	
31	lubber	8	55.5	S1 U S2
58	rusty	10	35.0	
44	guppy	5	35.0	
28	yuppy	9	35.0	

Set Operation: Intersection

- R ∩ S: returns a relation instance containing all tuples that occur in both R and S.
- R and S must be union compatible.
- Schema of the result is that of R.

Set Operation: Intersection

S1

sid	sname	rating	age	sid	sname	rating	age
	1			28	vuppy	9	35.0
22	dustin		45.0	21	lubbor	Q	55 5
21	lubbon	0	555		Iubbei	0	55.5
51	lubbel	0	33.3	44	guppy	5	35.0
58	rusty	10	35.0		8-775	10	
50	Tusty	10	55.0	58	rusty	10	35.0

sid	sname	rating	age	
31	lubber	8	55.5	S1 ∩ S2
58	rusty	10	35.0	

S2

Set Operation: Set-Difference

- R S: returns a relation instance containing all tuples that occur in R but not in S.
- R and S must be union-compatible.
- Scheme of the result is the schema of R.

Set Operation: Set-Difference

S2

S1

sid	sname	rating	age	sid	sname	rating	age
<u> </u>	ductin		45.0	28	yuppy	9	35.0
	uusun		43.0	31	lubber	8	55.5
31	lubber	8	55.5	44	guppy	5	35.0
58	rusty	10	35.0	58	rusty	10	35.0

S1 – S2

sid	sname	rating	age
22	dustin	7	45.0

Set Operation: Cross-Product

- R x S: Returns a relation instance whose scheme contains:
 - All the fields of R (in the same order as they appear in R)
 - All the fields os S (in the same order as they appear in S)
- The result contains one tuple <r,s> for each pair with r ∈ R and s ∈ S
- Basically, it is the Cartesian product.
- Fields of the same name are unnamed.

Set Operation: Cross-Product

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

S1 x R1

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Renaming

- Name conflict can arise in some situations
- It is convenient to be able to give names to the fields of a relation instance defined by a relational algebra expression.

$$\rho(R(\overline{F}),E)$$

•Take arbitrary relational expression E

- Returns an instance of a new relation R
- R is the result of E except that some fields are renamed
- Renaming list has the form (oldname \rightarrow newname or position \rightarrow newname)

Renaming

$\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

sid1	sname	rating	age	sid2	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Question: Can you define $R \cap S$ using other operators?

Other Operators?

- We can define any operation using the operators that we have seen.
- Some other operations appear very frequently.
- So they deserve to have their own operators.
 - Join
 - Division

Join

- Can be defined as cross-product followed by selection and projection.
- We have several variants of join.
 - Condition joins
 - Equijoin
 - Natural join

Condition Join

$$R \bowtie_{c} S = \sigma_{c} (R \times S)$$

Example: $S1 \bowtie_{S1.sid < R1.sid} R1$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

- •Condition consists only of equalities connected by Λ
- Redundancy in retaining both attributes in result
- So, an additional projection is applied to remove the second attribute.

Equijoin

Example:

 $S1 \bowtie Rsid = Sid R1$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Natural Join

- It is an equijoin in which equalities are specified on all fields having the same name in R and S
- We can then omit the join condition.
- Result is guaranteed not to have two fields with the same name.
- If no fields in common, then natural join is simply cross product.

Division

- Suppose A has two groups of fields <x,y>
- y fields are same fields in terms of domain as B
- A/B = <x> such as for every y value in a tuple of B there is <x,y> in A.

Division

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4
A	

Β1

*B*2

Question: Can we define A/B using the other basic operators?

Disqualified *x* values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B: $\pi_{\chi}(A)$ – all disqualified tuples

Sailors

sid	sname	ratin	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
$\overline{74}$	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	<u>10/10/98</u>
22	103	10/8/98
22	<u>104</u>	10/7/98
31	102	11/10/98
<u>31</u>	103	11/6/98
<u>31</u>	104	<u>11/12/98</u>
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Boats

Q1. Find the names of sailors who have reserved boat 103

Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{ Sailors})$$

Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Sailors

sid	sname	ratin	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	<u>10/10/98</u>
22	103	10/8/98
22	<u>104</u>	10/7/98
31	102	11/10/98
<u>31</u>	103	11/6/98
<u>31</u>	104	<u>11/12/98</u>
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q2: Find the names of sailors who have reserved a red boat. **Sol1:** $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie \text{Reserves} \bowtie Sailors)$

Sol2: $\pi sname^{(\pi sid)}(\pi sid^{(\pi sid)} \sigma color = red^{(\pi sid)} \bowtie \operatorname{Res}) \bowtie \operatorname{Res}) \bowtie \operatorname{Sailors})$

Sailors

sid	sname	ratin	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	<u>10/10/98</u>
22	103	10/8/98
22	104	10/7/98
<u>31</u>	102	<u>11/10/98</u>
31	103	11/6/98
<u>31</u>	104	<u>11/12/98</u>
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Boats

Q3: Find the colors of boats reserved by Lubber.

 $\pi_{color}((\sigma_{sname='Lubber'}Sailors) \bowtie \text{Reserves} \bowtie Boats)$

Sailors

sid	sname	ratin	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
<u>22</u>	102	10/10/98
<u>22</u>	103	10/8/98
<u>22</u>	104	10/7/98
<u>31</u>	102	11/10/98
<u>31</u>	103	11/6/98
<u>31</u>	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q5. Fine the names of sailors who reserved a red or a green boat.

$$\rho$$
 (Tempboats, ($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

Relational Calculus

- An alternative to relational algebra.
- Declarative
 - describe the set of answers
 - without being explicit about how they should be computed
- One variant is called: tuple relational calculus (TRC).
- Another variant: domain relational calculus (DRC)
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.

Tuple Relational Calculus

- A TRC query has the form {T | p(T)}
 T is a tuple variable
 p(T) is a formula that describes T
- Result: set of all tuples t to which p(T) evaluates to true when T = t
- Example: {S | S E Sailors 1\ S.rating > 7}

Tuple Relational Calculus

Q: Find the names and ages of sailors with a rating above 7

 $\{P \mid \exists S \in Sailors(S.rating > 7 \mid Pname = S.sname \mid Page = S.age)\}$

Q: Find the sailor name, boat id, and reservation date for each reservation.

 $\{P \mid \exists R \in Reserves \ \exists S \in Sailors \\ (R.sid = 8.sid! \land P.bid = R.bid! \land P.day = R.day ! \land P.sname = S.sname)\}$

Domain Relational Calculus

• Query has the form: $\left\{ \langle x1, x2, ..., xn \rangle | p(\langle x1, x2, ..., xn \rangle) \right\}$

• *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p[\langle x1, x2, ..., xn \rangle]$ be *true*.

Example: Find all sailors with a rating above 7

Algebra Vs Calculus

- Every query that can be expressed in relational algebra can also be expressed in relational calculus.
- The other way around is a bit tricky. Think, for example, about: {S | ¬{S E Sailors}}.

Conclusions

- Relational algebra and calculus are the foundation of query languages like SQL.
- Queries are expressed by languages like SQL, and the DBMS translates the query into relational algebra.
 - DBMS tries to look for the cheapest relational expression.
- Section 4.2.6 is very useful, pay close attention to it.
- For the calculus part, we will use slides only.